Обычно я придерживаюсь принципа, что чем меньше в схеме деталей, чем она проще, тем она надежнее. Но данный случай - исключение. Те, кто проектировал и собирал схемы мощных повышающих преобразователей напряжения с 12 / 24 вольт на 300 (например), знают, что классические подходы тут работают плохо. Слишком велики токи в низковольтных цепях. Использование схем с ШИМ приводит к возникновению коммутационных потерь, которые моментально перегревают и выводят из строя силовые транзисторы. Внутреннее сопротивление силовых ключей является серьезной помехой применению схем с конструктивным ограничением коммутационных потерь, таких как мостовые и полумостовые схемы. Приведенная схема основана на разделении функции повышения напряжения и его стабилизации в разных каскадах. При таком подходе мы получаем возможность самый проблемный блок - инвертор - заставить работать в резонансном режиме при минимальных потерях на силовых ключах и выпрямительном мосте в высоковольтной части схемы. А стабилизация выходного напряжения осуществляется в блоке СТ, который собран по простой повышающей топологии. Сейчас его схема не приводится, о нем будет отдельная статья. С его выхода снимается стабильное нужное напряжение. Принципиальная схема резонансного преобразователя напряженияФ - фильтр импульсных помех. Он снижает радиочастотные помехи от работы устройства. Так как инвертор работает в резонансном режиме, то эти помехи и так невелики. Можно попробовать использовать его без фильтра. Об устройстве и расчете таких фильтров будет отдельная статья. Конденсатор C1 - Батарея конденсаторов общей емкостью 88 000 мкФ. Четыре электролитических конденсатора по 22 000 мкФ 25 В и керамический конденсатор на 4 мкФ, соединенные параллельно. Соединение надо выполнять так, чтобы ток равномерно распределялся между конденсаторами. Длины проводников к каждому из них должны быть равны. Конденсатор C2 - Электролитический конденсатор 1 000 мкФ 25 В. Микросхема D2 - Интегральный стабилизатор напряжения на 10 вольт с малым внутренним падением напряжения. Диод VD1 1N4001 - например, или любой другой выпрямительный маломощный диод на 25 вольт, защищающий стабилизатор от обратного напряжения при выключении питания, которое возникает за счет разряда конденсатора C2. Конденсатор C3 - 0.1 мкФ керамический конденсатор. Конденсатор C4 - 1 - 2 нФ керамический конденсатор. Подбираем для получения нужной частоты. Резистор R1 - Подстроечный резистор 100 кОм. Микросхема D1 - ШИМ контроллер (1156ЕУ2 или UC1825, или UC2825, или UC3825). Мы его используем немного нестандартно - в качестве формирователя сигнала и драйвера силовых ключей. Диоды VD2, VD3, VD4, VD4 - Диоды Шоттки. 1N5818 или 1N5819. Эти диоды установлены, так как эксперименты показали, что в некоторых критических случаях, вероятно, за счет внутренних емкостей силовых полевых транзисторов на выводах 14 и 11 контроллера возникает напряжение выше напряжения питания или ниже нуля, что приводит к сгоранию микросхемы. Для повышения надежности установлены эти диоды, шунтирующие выбросы на шины питания и земли. Резисторы R2, R4 - 20 Ом 1 Вт. Резисторы R3, R5 - 100 Ом 1 Вт. Диоды VD6, VD7 - Диоды Шоттки 1N5822 Конденсатор C5 - Нужно подбирать под индуктивность рассеивания трансформатора. Можно начать с 0.1 мкФ 2000 В. В результате резонанса на этом конденсаторе может возникать напряжение, в разы превосходящее выходное. Так что по напряжению лучше иметь запас. Трансформатор - Для 12-вольтового варианта первичная обмотка содержит две половинки по 3 витка, вторичная - 64 витка. Для 24-вольтового варианта первичная обмотка содержит две половинки по 4 витка, вторичная - 42 витка. Подробнее о его изготовлении читайте далее. Мост М - мост из мощных быстродействующих диодов на 600 В. Мы собираем этот мост на диодах 30EPF06. Конденсатор C6 - Электролитический конденсатор 100 мкФ 400 В. Полевые транзисторы VT1, VT2 - IRFP2907
Источник: http://hw4.ru/circuitry-resonant-inverter |