Пятница, 26.04.2024, 07:24

Personal Systems of Free Energy [UA]
Studio Ideas Rakarskiy
Власні Системи Вільної Енергії 

Приветствую Вас Гость | RSS
Меню сайта

Категории раздела
Из Сети [83]
Размещенные в свободном доступе
Free Energy Systems [59]

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0


СПОСОБ ВОЗБУЖДЕНИЯ ПАРАМЕТРИЧЕСКОГО РЕЗОНАНСА (Зубковы)

(54) КОММУТАЦИОННЫЙ СПОСОБ ВОЗБУЖДЕНИЯ ПАРАМЕТРИЧЕСКОГО РЕЗОНАНСА ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

(57) Реферат:

Изобретение относится к области электроэнергетики, конкретнее к автономным источникам электропитания, и может найти применение в промышленности, в бытовой технике и на транспорте. Техническим результатом является упрощение и снижение стоимости. В коммутационном способе возбуждения параметрического резонанса и устройстве для его осуществления за счет возбуждения коммутационным способом параметрического резонанса электрических колебаний генерируется реактивная электрическая мощность. Это явление реализуется в генераторах реактивной электрической мощности (ГРЭМ). К колебательному контуру в определенные моменты времени в заданном режиме с помощью тиристоров подключается параллельно дополнительная катушка индуктивности или конденсатор с определенным номинальным значением индуктивности или емкости по отношению к аналогичным элементам основного контура. Это позволяет изменять в процессе каждого колебания параметры контура (индуктивность, емкость, частоту колебаний, волновое сопротивление) в соответствии с алгоритмом изменения управляющего напряжения, подающегося на тиристоры от отдельного импульсного генератора (ИГ), и достигать тем самым параметрического резонанса без функциональной связи амплитуд тока и напряжения в контуре с величиной управляющего напряжения. Стационарная амплитуда параметрических колебаний обеспечивается за счет стабилитронов с шунтирующими резисторами, подключаемых параллельно контуру, которые, пропуская через себя часть участвующего в процессе колебания заряда и рассеивая излишнюю реактивную мощность, ограничивают тем самым амплитуды напряжения и тока в необходимых для работоспособности контура пределах. Функционирование ИГ осуществляется за счет части выходной мощности ГРЭМ, что обеспечивают полную автономность ГРЭМ, как источника электропитания. 2 н.п. ф-лы, 7 ил.

 

Изобретение относится к электроэнергетике, конкретнее к автономным источникам электропитания, и может найти широкое применение в промышленности, в бытовой технике и особенно на транспорте.

Все известные в настоящее время источники электропитания по своей физической сути являются преобразователями различных видов энергии (механической, химической, электромагнитной, ядерной, тепловой, световой) в электрическую энергию и реализуют только эти затратные способы получения электрической энергии.

Целью настоящего изобретения является создание на основе параметрического резонанса электрических колебаний автономного источника электропитания (генератора), не сложного по конструкции и не дорогого по стоимости изготовления в соответствии с достигнутым на сегодня техническим уровнем. Под автономностью в настоящем изобретении подразумевается полная функциональная независимость этого источника от воздействия каких-либо сторонних сил или привлечения других видов энергии. В настоящем описании под параметрическим резонансом (ПР) понимается явление непрерывного возрастания амплитуд электрических колебаний в колебательном контуре при периодических изменениях одного из его параметров (индуктивности или емкости). Эти колебания происходят без участия внешней электродвижущей силы (ЭДС).

Классическая энергетическая теория ПР заключается в том, что при изменении емкости или индуктивности контура в определенные моменты времени путем раздвижения пластин конденсатора или растягивания витков катушки индуктивности (ИК) при последующем возвращении этих параметров в исходное положение в контуре выделяется дополнительная энергия, вызывающая нарастание амплитуд напряжения и тока. Появление этой дополнительной энергии объяснялось предварительными затратами механической энергии на преодоление кулоновских или амперовских сил притяжения пластин или витков.

Наиболее близкими по техническому решению к описываемому изобретению являются индукционная и емкостная параметрические машины, созданные в 1931-1932 годах (академики Л.И.Мандельштам, Н.Д.Папалекси. «Оригинальные работы о параметрическом возбуждении электрических колебаний». Журнал технической физики. Том IV, выпуск 1).

Изменение параметров контура в этих машинах производилось за счет вращения дисков с прорезями, вставленных в зазор сердечника ИК или между пластинами конденсатора и насаженных на вал электродвигателя, подключенного к стороннему источнику электропитания. В прорезях дисков величина магнитной или диэлектрической проницаемости имела значение, соответствующее воздушному зазору в сердечнике или между пластинами конденсатора в отличие от значений этих величин в применяемых для изготовления дисков материалах. Поэтому при вращении дисков периодически изменялась диэлектрическая проницаемость диэлектрика конденсатора или магнитная проницаемость сердечника ИК, что приводило к изменению общей емкости или индуктивности контура в целом.

Проведенные с параметрическими машинами эксперименты показали, что при определенных скоростях вращения вала в контуре развивался устойчивый ПР, сопровождающийся непрерывным увеличением амплитуд тока и напряжения. Нарастание амплитуд происходило не только при уменьшении индуктивности или емкости контура, но также и при их увеличении, что противоречило классической энергетической теории ПР.

Несмотря на достигнутые положительные результаты в научных изысканиях, этот способ возбуждения ПР имел ряд существенных недостатков для практического применения. Характер изменения параметров носил синусоидальный характер и требовал определенных затрат механической энергии на преодоление кулоновских и амперовских сил, препятствующих вращению дисков. Эти затраты находились в прямой зависимости от амплитудных значений напряжения и тока, развиваемых в контуре. Глубина модуляции (относительное изменение) параметров была невысокой (12-40%), периодичность их изменения задавалась скоростью вращения вала электродвигателя, что сказывалось на возможностях возбуждения и устойчивости параметрических колебаний. Требовался также отдельный источник питания для электродвигателя, обороты которого приходилось тщательно стабилизировать в условиях изменяющейся нагрузки на его валу из-за возникающей обратной связи этой нагрузки с амплитудными значениями тока и напряжения в контуре.

Технический уровень, существующий в то время, не позволял преодолеть указанные недостатки, поэтому практического применения параметрические машины не нашли.

Кроме того, при создании параметрических машин авторы преследовали чисто научно-исследовательские цели без какого-либо дальнейшего практического применения созданных лабораторных установок в качестве источников электропитания.

Коммутационный способ возбуждения ПР электрических колебаний позволяет получить скачкообразный характер изменения индуктивности или емкости колебательного контура, высокую глубину модуляции параметров (от 300% и выше) и обеспечить условно-постоянные затраты энергии на изменение параметров, не зависящие от амплитудных значений тока и напряжения в контуре.

Сущность способа заключается в том, что в определенные моменты времени к колебательному контуру через тиристоры подключается дополнительная ИК или конденсатор, которые скачкообразно изменяют общую индуктивность или емкость основного контура.

Тиристор, работающий с подключением управляющего электрода (тринисторный режим), имеет два устойчивых состояния. При подаче положительного напряжения Us между управляющим электродом и катодом этот тиристор открывается и далее остается открытым независимо от наличия управляющего напряжения. Тиристор закрывается только после снятия управляющего напряжения Us при последующем изменении направления протекающего через него тока на противоположное или при его нулевом значении. В открытом состоянии тиристор сохраняет одностороннюю проводимость как диод. При повышении анодного напряжения до определенного критического значения Ua тиристор открывается независимо от наличия управляющего напряжения. Величина открывающего тиристор управляющего напряжения не зависит от величины протекающего через тиристор тока и определяется только его конструкцией и применяемыми при его изготовлении материалами.

Время перехода тиристора из одного состояния в другое составляет примерно 10-5 с. При частоте 50 Гц, применяемой в большинстве источников переменного тока (длительность периода колебания 10-2 с), такое переключение тиристора можно считать скачкообразным.

Дополнительный конденсатор или ИК подключаются к контуру параллельно. Соотношения между номинальными значениями индуктивностей или емкостей основных и дополнительных элементов составляет один к трем.

Меньшая емкость (С) является основной, большая емкость (3С) - дополнительной. При таком подключении эквивалентная емкость контура вместо имеющейся емкости 1С составит Ceq, которая равна:

И, наоборот, большая индуктивность (3L) является основной, меньшая индуктивность (L) - дополнительной. При таком подключении эквивалентная индуктивность контура вместо имеющейся индуктивности L составит Leq, которая равна:

После проведенной коммутации соответствующий параметр контура увеличивается или уменьшается в четыре раза, что изменяет частоту колебаний контура , которая определяется следующей формулой

Такая коммутация обеспечивает возможность колебания контура в двух частотных режимах: на основной резонансной частоте  и параметрических частотах 2 или 0,5. Эти частоты являются резонансными для обоих режимов контура, при которых обеспечивается равенство волнового, индуктивного и емкостного сопротивлений. Тем самым соблюдается первое условие возникновения ПР - кратность параметрической частоты по отношению к основной частоте контура.

Подключение дополнительного конденсатора или ИК производится в момент достижения в контуре максимального значения тока, а отключение - при нулевом значении тока. Напряжение в контуре в эти моменты имеет соответственно нулевое или максимальное значение. За счет изменения параметров часть периода колебания контура работает на основной частоте, а часть - на параметрической частоте. Результирующее колебание является сложением двух вышеуказанных колебаний.

Физический смысл коммутационного способа возбуждения ПР заключается в следующем. Магнитное и электрическое поле представляют собой неподвижные статичные среды, возмущения (деформации) в которых связаны между собой и описываются уравнениями Максвелла. В электротехнике степень возмущения магнитного поля оценивается потокосцеплением (суммарным потоком магнитной индукции) , а электрического поля - напряжением на обкладках конденсатора U. В контуре этим величинам соответственно противопоставляются ток (скорость движения заряда) I и заряд q (количество электричества).

Все эти величины - материальные и подчиняются законам сохранения материи и коммутации, связь их действующих значений для контура и поля описываются следующими уравнениями:

где  - потокосцепление (суммарный поток магнитной индукции);

L - индуктивность контура;

I - ток в контуре;

U- напряжение на обкладках конденсатора;

q - заряд (количество электричества);

С - емкость конденсатора.

Левые части уравнений отражают возмущения в окружающих полях, правые части - соответствующие им возмущения в контуре. На создание возмущений требуются затраты энергии поля или контура, которые при их ликвидации возвращаются обратно источнику этих возмущений - полю или контуру. Энергии возмущений определяются следующими квадратными уравнениями:

где We - максимальная электрическая энергия;

Wm - максимальная магнитная энергия.

Двойственность этих уравнений заключается в том, что первая часть уравнений выражает энергию возмущений в полях, а вторая - соответствующую ей энергию в контуре. Фактически в уравнениях (5), (6) отражены не энергии, а изменения энергий полей и контура при возникновении или исчезновении магнитных или электрических возмущений. Эти изменения энергий полей и контура равны между собой, но противоположны по знаку. Если энергия контура при заряде конденсатора увеличивается, то энергия электрического поля при этом снижается на такую же величину. При нарастании тока энергия контура уменьшается, а энергия магнитного поля увеличивается на такую же величину. Алгебраическая сумма изменений соответствующих энергий в поле и в контуре равна нулю.

Кроме того, связь между уравнениями (4) и (5) определяется следующими зависимостями максимальных значений величин, находящихся в противофазе:

где Z- волновое сопротивление.

В отличие от емкостного и индуктивного сопротивлений, зависящих от частоты, волновое сопротивление является универсальной характеристикой контура, связывающей основные изменяемые параметры:

Уравнения (4) и (5) также связаны между собой следующими соотношениями максимальных величин, находящихся в противофазе:

где  - действующая в контуре частота;

K - безразмерный коэффициент пропорциональности.

Еще одной величиной, связывающей изменения возмущений электрического и магнитного поля, является ЭДС самоиндукции EL, которая отражает динамику (скорость) переходных процессов и выражается следующей зависимостью:

где d/dt - скорость изменения потокосцепления в поле;

dI/dt - скорость изменения тока в контуре.

Индуктивность, емкость, частота, волновое сопротивление по физическому смыслу являются коэффициентами пропорциональности (соответствия) между магнитными и электрическими возмущениями, а также между контурными и полевыми формами этих возмущений и связанными с ними изменениями энергий.

При свободных колебаниях уравнения (4)-(12) находятся в равновесии. Первую четверть периода колебаний электрическая энергия контура, сосредоточенная в конденсаторе, уменьшается, а магнитная энергия поля вокруг ИК увеличивается. Контур отдает реактивную мощность в магнитное поле. Вторую четверть периода контур получает эту мощность из магнитного поля вокруг ИК и превращает ее в электрическую энергию в конденсаторе. Все переходные процессы превращения возмущений и энергий происходят синхронно в поле и в контуре, их длительность задается периодом (частотой) колебаний.

Общую связь между возмущениями контура и поля можно выразить следующей формулой

.

На момент коммутации в полях и в контуре уже имеются ранее возникшие возмущения в виде напряжения, заряда, тока и магнитного потока, на создание которых была затрачена определенная энергия. После коммутации коэффициенты пропорциональности изменяются, уравнения (4)-(12) превращаются в неравенства. Синхронность процессов превращения энергий в поле и контуре нарушается, из-за несоответствия контурных и полевых возмущений возникают параметрические ЭДС, порождающие дополнительные процессы уравновешивания этих возмущений и перераспределения энергий между контуром и полями. Эти процессы происходят одновременно с основными переходными процессами, длительность которых задается параметрами L и С.

Процессы, происходящие при изменениях параметров, описываются линейными дифференциальными уравнениями второго порядка с периодическими коэффициентами:

Емкость С и индуктивность L из-под знака дифференциала не выносятся, так как являются переменными величинами, изменения которых могут быть описаны с помощью прямоугольных синусов или косинусов на основании теории Фурье. При периодическом скачкообразном изменении этих параметров левые части уравнений не становятся равными нулю, что фактически превращает эти уравнения в уравнения колебаний под действием периодической возбуждающей силы в виде параметрической ЭДС. Величина этой ЭДС является разницей, возникающей в уравнениях (15), (16) в положениях контура до и после проведенной коммутации.

Таким образом, сущность коммутационного способа получения ПР сводится к тому, что периодическими изменениями параметров контур и поле постоянно выводятся из положения энергетического и силового равновесия с последующим восстановлением этого равновесия, что сопровождается изменениями возмущений и перераспределением связанных с ними энергий между контуром и полем.

Коммутационный способ возбуждения ПР электрических колебаний реализуется в специальных устройствах - генераторах реактивной электрической мощности (ГРЭМ). Как и параметрические машины они могут быть двух видов - емкостные и индукционные. Принципиальная схема емкостного ГРЭМ представлена на фиг.1.

Устройство состоит из силового трансформатора Т2, имеющего сердечник из ферромагнитного сплава с линейной зависимостью магнитной индукции от напряженности магнитного поля в пределах рабочего тока в ГРЭМ. Первичная обмотка трансформатора 1 с индуктивностью L совместно с подключенным через тиристоры VS3, VS4 и ключ S1 основным конденсатором С2 образует колебательный контур, к которому через тиристоры VS1, VS2 подключается дополнительный конденсатор С1. Емкость дополнительного конденсатора составляет 3С, емкость основного конденсатора составляет 1C. Параллельно контуру подключены стабилитроны VD2, VD4 с защищающими диодами VD1,VD3 и шунтирующими резисторами R1, R2.

Управляющие электроды и катоды тиристоров соединены с обмотками 3, 4, 5, 6 генератора прямоугольных импульсов (ИГ), собранного на базе трансформатора Т1, транзистора VT1, конденсатора С3 и сопротивлений R3, R4. Во избежание паразитных электрических связей каждый тиристор подключен к отдельной обмотке, которые размещены на магнитопроводе таким образом, что тиристоры VS1, VS2 открываются положительным импульсом управляющего напряжения ИГ, а тиристоры VS3, VS4 открываются отрицательным импульсом. Магнитопровод трансформатора ИГ изготовляется из ферромагнитного материала с прямоугольной петлей гистерезиса. Подбором параметров и характеристик элементов ИГ (обмоток 3, 4, 5, 6, сопротивлений R3, R4, конденсатора СЗ, транзистора VT1) длительность положительного импульса устанавливается равной 0,25 T, отрицательного - 0,5 T (T - длительность периода основной частоты ).

ИГ через ключ S4, выпрямительный мостик из диодов VD5-VD8 и сглаживающий фильтр, состоящий из дросселя L1 и конденсатора С4, подключен к вторичной обмотке 3 трансформатора Т2. Для обеспечения запуска ИГ имеет автономный источник электропитания в виде аккумулятора G1 с устройством подзарядки на базе стабилитрона VD10 с защищающим диодом VD11. Аккумулятор через ключ S3 и диод VD9 соединен с конденсатором С1. Нагрузка в виде сопротивления с номиналом Rl через ключ S2 подключена к вторичной обмотке 2 трансформатора Т2.

ИГ работает следующим образом. При подключении напряжения питания через ключ S4 на базу транзистора VT1 через резистор R3 подается отпирающий потенциал. Транзистор открывается и через первичную обмотку 1 трансформатора Т1 протекает ток, который заряжает конденсатор С3 и вызывает нарастание магнитного потока в магнитопроводе трансформатора. Появляющееся при этом напряжение на обмотке 1 трансформируется в обмотку положительной обратной связи 2, полярность которой такова, что она способствует полному открытию транзистора. Когда ток коллектора достигнет своего максимального значения, нарастание магнитного потока в трансформаторе прекращается, полярность напряжений на обмотках трансформатора изменяется на обратную и происходит лавинообразный процесс запирания транзистора. Конденсатор С3, разряжаясь через обмотку 1, формирует отрицательный полупериод напряжения (Справочник «Источники питания РЭА», «Радио и связь», М., 1986).

Так как реальная форма прямоугольных импульсов ИГ несколько трапециевидна, а полупроводниковые свойства материалов тиристоров проявляются с определенной инерцией, между закрытием одной пары тиристоров и открытием другой пары проходит небольшой промежуток времени, что исключает возможность открытия одной пары тиристоров при незакрытой другой паре.

Для упрощения предварительного анализа процессов, протекающих при функционировании ГРЭМ, активные потери мощности на омических сопротивлениях в колебательном контуре не учитываются. В исходном состоянии все ключи ГРЭМ разомкнуты, конденсаторы разряжены.

Для приведения генератора в рабочее состояние замыкается, а затем размыкается ключ S3. Конденсатор С1 приобретает от аккумулятора G1 начальный пусковой заряд q1, выводящий контур из положения равновесия (второе условие возникновения ПР).

Замыкается ключ S4 и включается ИГ. Пусковой заряд распределяется между параллельно соединенными конденсаторами С1 и С2 пропорционально их емкостям и в контуре устанавливается начальное напряжение U01. Конденсатор С1 приобретает заряд, равный 0,75q1, a конденсатор С2 приобретает заряд 0,25q1. За счет уменьшения энергии электрического поля общая электрическая энергия конденсаторов и контура We1 составит (6)

Эта энергия распределяется между конденсаторами С1 и С2 пропорционально их емкостям (We1' - энергия конденсатора С1, We1'' - энергия конденсатора С2)

Замыкается ключ S1 и начинается рабочий цикл ГРЭМ, который делится на четыре этапа. Для упрощения анализа происходящих процессов предполагается, что сразу после замыкания ключа S1 подается импульс управляющего напряжения, открывающий тиристоры VS3, VS4, а тиристоры VS1, VS2 при этом закрыты. Теоретически, любая среднестатистическая флуктуация электрического или магнитного поля может являться начальным условием возбуждения ПР, особенностью которого является то, что конечные амплитуды колебаний тока и напряжения не зависят от их начальных значений.

Тиристоры VS3, VS4 открываются, в контуре устанавливается начальное напряжение U01. Начальная электрическая энергия контура определяется выражением (19). Начинается первый этап, в котором эквивалентная емкость контура составляет С, волновое сопротивление, рассчитанное по формуле (10) равно Zc, действует основная частота (3).

Временная диаграмма работы устройства представлена на фиг.2, на которой время отложено в долях периода основной частоты Т. На этой диаграмме приняты следующие обозначения изменяющихся величин:

Us - управляющее напряжение на тиристорах;

Ceq - общая емкость контура;

I - общий ток в неразветвленной цепи контура;

UC1 - напряжение на конденсаторе С1;

UC2 - напряжение на конденсаторе С2;

Q - реактивная электрическая мощность контура.

Конденсатор С2 разряжается через ИК и тиристор VS4, в контуре появляется ток, электрическая энергия контура уменьшается, а магнитная энергия поля увеличивается. Конденсатор С1 в это время отключен от контура, так как тиристоры VS1, VS2 закрыты. В начальный момент времени ЭДС самоиндукции EL1, препятствующая нарастанию тока и рассчитанная по формуле (13), имеет максимальное значение, которое численно равно начальному напряжению первого этапа U01.

Через время, равное 0,25Т, вся электрическая энергия контура переходит в магнитную энергию, заряд 0,25q1 переходит из конденсатора С2 в контур в виде тока, напряжение на нем становится равным нулю. Ток первого этапа I1 достигает своего максимального значения, определяемого формулой (8)

Максимальная магнитная энергия в конце этапа Wm1 составит по формуле (7)

На эту величину увеличится также и энергия электрического поля.

Все процессы первого этапа происходят синхронно, его длительность составляет 0,25 Т.

Управляющее напряжение ИГ изменяет свою полярность и при его переходе через ноль тиристор VS3 закрывается (ток через него не течет), а тиристор VS4 остается открытым (ток через него максимален).

 

Категория: Free Energy Systems | Добавил: rakarskiy (13.11.2017) W
Просмотров: 1349 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Вход на сайт

Поиск

Друзья сайта

Copyright MyCorp © 2024Создать бесплатный сайт с uCoz